

SCIENCE DIRECT®

Mendeleev Commun., 2007, 17, 137-138

Mendeleev Communications

Distinct reactivities of *cis*- and *trans*-R_FCF=CFBF₂ towards XeF₂ and the first synthesis of a [*trans*-R_FCF=CFXe]⁺ salt

Hermann-Josef Frohn*a and Vadim V. Bardin^b

- ^a Department of Chemistry, Inorganic Chemistry, University of Duisburg-Essen, D-47048 Duisburg, Germany. Fax: +49 203 379 2231; e-mail: h-j.frohn@uni-due.de
- ^b N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russian Federation

DOI: 10.1016/j.mencom.2007.05.001

The competitive reaction of $C_4F_9CF=CFBF_2$ (cis:trans = 1.2:1) with XeF_2 demonstrated for the first time a remarkably lower reaction rate of the trans isomer with respect to the cis isomer in the xenodeborylation reaction (formation of the $[C_4F_9CF=CFXe]^+$ cation with a cis:trans ratio of 2.5 to 4:1) and allowed us to develop reaction conditions for the syntheses of $[trans-C_4F_9CF=CFXe]^+$ salts.

We have developed a widely applicable method to synthesise organoxenonium(II) salts [RXe][Y]. Using the reaction of XeF_2 with (organo)difluoroboranes RBF_2 , we were able to prepare a representative series of organoxenonium salts with R = aryl, alkenyl and alkynyl groups following Scheme 1. $^{1-4}$

$$XeF_2 + RBF_2 \xrightarrow{i} [RXe][BF_4]$$

Scheme 1 *Conditions*: i, $\mathrm{CH_2Cl_2}$, 1,1,1,3,3-pentafluoropropane (PFP), or $\mathrm{SO_2FCl}$, -65 to -30 °C.

However, the reactivity of alk-1-enyldifluoroboranes XCF=CFBF₂ towards XeF₂ diverged from the pattern described in Scheme 1. When X was F, cis- C_nF_{2n+1} (n = 1, 2) and trans-H, the corresponding alkenylxenon(II) salts were formed. In case of X = trans- $C_n F_{2n+1}$ (n = 1, 4), the perfluoroalkenyldifluoroborane starting compound was slowly consumed, but no organoxenonium salts were detected among the reaction products.² This was surprising because the trans configuration was realised in the structurally related perfluorocyclohexa-1,4-dien-1-ylxenonium and perfluorocyclohex-1-enylxenonium salts, which were obtained by the oxidative fluorine addition to $[C_6F_5Xe][Y]$ as relatively stable compounds.⁵ Furthermore, the closely related reaction of trans-CF₃CF=CFBF₂ with other hypervalent F-E-F moieties such as in 4-FC₆H₄IF₂ yielded smoothly the corresponding iodonium salt [(4-FC $_6$ H $_4$)(trans-CF $_3$ CF=CF)I][BF $_4$]. We have assumed that the formation of [trans-XCF=CFXe][Y] from trans-XCF=CFBF2 and XeF2 is sterically hindered when X represents a bulky substituent (perfluoroalkyl group). In such cases, competitive side-processes (oxidative fluorination etc.) became predominant.²

The relative rate of xenodeborylation [the formal replacement of the difluoroboryl group by xenon(+)] of *cis*- and *trans*-per-fluoroalk-1-enyldifluoroboranes can be estimated by reacting an equimolar mixture of both isomers with XeF₂. For this competitive reaction, we prepared a solution of $C_4F_9CF=CFBF_2$ (*cis:trans* = 1.2:1) (1) in CH_2Cl_2 ,† and treated it with a solution of xenon difluoride in 1,1,1,3,3-pentafluoropropane (PFP) at -35 to -40 °C. After 1 h, the mixture of *cis*-perfluorohex-1-enylxenon(II) (*cis*-2) and *trans*-perfluorohex-1-enylxenon(II) (*trans*-2) salts (molar ratio of 4:1) was precipitated, and a white solid was isolated. The opposite order of mixing the reagents, the addition of 1 to XeF₂ in PFP, gave a mixture of *cis*-2 and

*trans-***2** in the molar ratio 2.5:1 ‡ (Scheme 2). The way how the ratio of isomers in the product depends on the order of mixing shows that, in case of a local excess of the borane starting material, $trans-C_4F_9CF=CFBF_2$ is faster consumed in a byreaction competing with xenodeborylation than the cis isomer.

cis-1: ¹¹B NMR (PFP, 0 °C) δ : 19.3 (br. s). ¹⁹F NMR (PFP, 0 °C) δ : -79.9 [tt, 3F, F(6), ${}^3J_{\text{F(6)-F(5)}}$ 2 Hz, ${}^4J_{\text{F(6)-F(4)}}$ 10 Hz], -82.3 (s, 2F, BF₂), -115.0 [m, 2F, F(3)], -122.2 [m, 2F, F(4)], -122.4 [m, F, F(2)], -124.8 [m, 2F, F(5)], -145.1 [m, 1F, F(1)].

[‡] A cold (5 °C) solution of XeF₂ (160 mg, 0.95 mmol) in PFP (1.5 ml) was added to a cold (-40 °C) stirred solution of cis-1 (0.33 mmol) and trans-1 (0.27 mmol) in CH₂Cl₂ (1.5 ml). A white suspension was formed and stirred at -35 °C for 1 h, the mother liquor was decanted, the solid residue was washed with cold (-30 °C) PFP (1.5 ml) and dried in a vacuum at -25 °C for 30 min to give a white solid mixture of 2 (55 mg) (cis:trans = 4:1) ([BF₄]⁻:[C₆F₁₃BF₃]⁻ = 1:3). The mother liquor contained cis-C₄F₉CF=CFH (0.03 mmol), trans-C₄F₉CF=CFH (0.08 mmol), $C_6F_{13}BF_2$ (0.08 mmol), C_6F_{14} (0.11 mmol), CH_2FC1 and CHF_2C1 (¹⁹F NMR). Similarly, **2** (144 mg) (cis:trans = 2.5:1) ([BF₄]⁻:[C₆F₁₃BF₃]⁻ = = 2:1) was obtained by the addition of cis-1 (0.31 mmol) and trans-1 (0.26 mmol) in PFP (2 ml) to XeF₂ (113 mg, 0.66 mmol) in PFP (1 ml). Salts trans-2 ($[BF_4]^-$: $[C_6F_{13}BF_3]^- = 15:85$) (110 mg) were obtained by the addition of trans-1 (0.77 mmol) in PFP (2.5 ml) to XeF₂ (135 mg, 0.79 mmol) in PFP (2 ml) at -40 °C and working up after stirring for 4 h (88% conversion of trans-1; the yields of C₆F₁₃BF₂ and C₆F₁₄ were 0.08 and 0.20 mmol, respectively).

2: $^{19}{\rm F}$ NMR (aHF, $-20~^{\circ}{\rm C})$ δ : -71.8 [dd*, 1F, F(1), $^{3}J_{{\rm F(1)-F(2)}}$ 72 Hz, $^{2}J_{{\rm F(1)-Xe}}$ 146 Hz], 79.4 [t, 3F, F(6), $^{4}J_{{\rm F(6)-F(4)}}$ 10 Hz], -112.6 [tdd*, 2F, F(3), $^{4}J_{{\rm F(3)-F(5)}}$ 13 Hz, $^{3}J_{{\rm F(3)-F(2)}}$ 13 Hz, $^{4}J_{{\rm F(3)-Xe}}$ 53 Hz], -117.7 [dd*, 1F, F(2), $^{3}J_{{\rm F(2)-F(1)}}$ 72 Hz, $^{3}J_{{\rm F(2)-Xe}}$ 180 Hz], -120.6 [m, 2F, F(4)], -124.2 [m, 2F, F(5)] (cis-2); -79.5 [t, 3F, F(6), $^{4}J_{{\rm F(6)-F(4)}}$ 10 Hz], -86.9 [tdd*, 1F, F(1), $^{4}J_{{\rm F(1)-F(3)}}$ 25 Hz, $^{3}J_{{\rm F(1)-F(2)}}$ 123 Hz, $^{2}J_{{\rm F(1)-Xe}}$ 161 Hz], -114.6 [ddt, 2F, F(3), $^{4}J_{{\rm F(3)-F(1)}}$ 25 Hz, $^{3}J_{{\rm F(3)-F(2)}}$ 12 Hz, $^{4}J_{{\rm F(3)-F(5)}}$ 12 Hz], -121.4 [m, 2F, F(4)], -124.4 [m, 2F, F(5)], -133.1 [d, 1F, F(2), $^{3}J_{{\rm F(2)-F(1)}}$ 123 Hz] (trans-2); -79.6 [t, 3F, F(6), $^{4}J_{{\rm F(6)-F(4)}}$ 10 Hz], -120.1 (m, CF₂), -120.9 (m, CF₂), -121.6 (m, CF₂), -124.4 [m, 2F, F(5)], -132.2 [m, 2F, F(1)], -147.7 (br. s, BF₃) ([C₆F₁₃BF₃]⁻), 147.7 (br. s) ([BF₄]⁻). 129 Xe NMR (aHF, $-20~^{\circ}$ C) δ : -3413 (ddt, $^{2}J_{{\rm Xe-F(1)}}$ 148 Hz, $^{3}J_{{\rm Xe-F(2)}}$ 50 Hz) (trans-2). 11 B NMR (aHF, $-20~^{\circ}$ C) δ : -0.6 (br. s, [C₆F₁₃BF₃]⁻), -2.2 (s, [BF₄]⁻).

 $^{^{\}dagger}$ A solution of *cis-***1** and *trans-***1** was prepared in a quantitative yield by bubbling BF₃ (in an excess) into a cold (-45 °C) stirred suspension of K[C₄F₉CF=CFBF₃] (*cis:trans* = 1.3:1)⁸ in CH₂Cl₂ or PFP and subsequent decantation of the mother liquor from insoluble K[BF₄]. The NMR spectra of *trans-***1** coincided with the reported one.^{2,9}

The procedure where a Lewis acid (borane) was added to the fluorobase (XeF₂) allowed to obtain *trans*-perfluoroalk-1-enyl-xenonium salts for the first time.

The composition of the *cis/trans* mixture of **2** was unambiguously proved by multinuclear magnetic resonance spectroscopy§ and by conversion to corresponding 1-iodoperfluorohex1-enes using NaI in aHF 7 (Scheme 3).¶

$$XeF_2 + C_4F_9CF = CFBF_2 \xrightarrow{i} [C_4F_9CF = CFXe][BF_4, C_6F_{13}BF_3] + 1$$

$$Xe^0 + C_6F_{13}BF_2 + C_6F_{14}$$

Scheme 2 Conditions: i, CH₂Cl₂ or PFP, -35 °C, 1-1.5 h.

$$\begin{array}{ccc} [C_4F_9CF=CFXe][BF_4,C_6F_{13}BF_3] + NaI_{(s)} & \xrightarrow{i} & C_4F_9CF=CFI \\ & & & & & & & \\ \end{array}$$

Scheme 3 Conditions: i, aHF, -60 °C.

3: $^{19}\mathrm{F}$ NMR (CH₂Cl₂, $^{-2}0$ °C) δ : $^{-8}1.8$ [t, 3F, F(6), $^{4}J_{\mathrm{F(6)-F(4)}}$ 10 Hz], $^{-8}2.7$ [d, 1F, F(1), $^{3}J_{\mathrm{F(1)-F(2)}}$ 7 Hz], $^{-1}14.8$ [td, 2F, F(3), $^{4}J_{\mathrm{F(3)-F(5)}}$ 12 Hz, $^{3}J_{\mathrm{F(3)-F(2)}}$ 12 Hz], $^{-1}24.4$ [m, 2F, F(4)], $^{-1}27.4$ [m, 2F, F(5)], $^{-1}30.1$ [m, 1F, F(2)] (cis-3); $^{-8}1.9$ [t, 3F, F(6), $^{4}J_{\mathrm{F(6)-F(4)}}$ 9 Hz], $^{-1}07.4$ [ttd, 1F, F(1), $^{5}J_{\mathrm{F(1)-F(4)}}$ 6 Hz, $^{4}J_{\mathrm{F(1)-F(3)}}$ 26 Hz, $^{3}J_{\mathrm{F(1)-F(2)}}$ 150 Hz], $^{-1}18.0$ [m, 2F, F(3)], $^{-1}25.7$ [m, 2F, F(4)], $^{-1}27.5$ [m, 2F, F(5)], $^{-1}46.2$ [d, 1F, F(2), $^{3}J_{\mathrm{F(2)-F(1)}}$ 150 Hz] (trans-3) 10 (cis: trans = 4:1).

This result demonstrated that [trans-R_FCF=CFXe][Y] salts are principally accessible to xenodeborylation. Thus, we changed our earlier applied conditions for the reaction of trans-1 with XeF₂² and were able to isolate individual salt trans-2. In case of trans-R_FCF=CFBF₂, a diminished rate of xenodeborylation is combined with a larger relative contribution of by-reactions, mainly oxidative fluorination reactions with polarised XeF₂.² For comparison, both boranes, cis- and trans-ClCF=CFBF₂, with the sterically less demanding substituent Cl underwent xenodeborylation with equal rates.² The replacement of the α -fluorine atom in CF₂=CFBF₂ by the more bulky CF₃ group did not affect the rate of xenodeborylation.³

This work was supported by the Deutsche Forschungsgemeinschaft, the Russian Foundation for Basic Research (grant no. 00-03-04003-NNIO_a), and the Fonds der Chemischen Industrie.

References

- 1 H.-J. Frohn and V. V. Bardin, Organometallics, 2001, 20, 4750.
- 2 H.-J. Frohn, N. Yu. Adonin and V. V. Bardin, Z. Anorg. Allg. Chem., 2003, 629, 2499.
- 3 H.-J. Frohn and V. V. Bardin, Z. Anorg. Allg. Chem., 2003, 629, 2465.
- 4 H.-J. Frohn and V. V. Bardin, Eur. J. Inorg. Chem., 2006, 3948.
- 5 H.-J. Frohn and V. V. Bardin, J. Chem. Soc., Chem. Commun., 1993, 1072.
- 6 A. Abo-Amer, N. Yu. Adonin, V. V. Bardin, P. Fritzen, H.-J. Frohn and C. Steinberg, J. Fluorine Chem., 2004, 125, 1771.
- 7 H.-J. Frohn and V. V. Bardin, Z. Anorg. Allg. Chem., 2004, 630, 1022.
- 8 V. V. Bardin and H.-J. Frohn, Z. Anorg. Allg. Chem., 2002, 628, 721.
- 9 H.-J. Frohn and V. V. Bardin, J. Organomet. Chem., 2001, 631, 54.
- 10 R. D. Howells and H. Gilman, J. Fluorine Chem., 1975, 5, 99.

Received: 7th December 2006; Com. 06/2839

 $[\]S$ The NMR spectra were recorded on a Bruker AVANCE 300 spectrometer (^{19}F at 282.40 MHz, ^{129}Xe at 83.46 MHz). The chemical shifts were referenced to CCl $_3F$ (^{19}F) [with C_6F_6 as a secondary reference, δ : 162.9] and XeOF $_4$ (^{129}Xe) [with XeF $_2$ as a secondary reference, XeF $_2$ /MeCN/ 24 °C ($c \rightarrow 0$), δ : –1813.28]. As a convention, the multiplicities of the ^{19}F NMR signals caused by couplings with the ^{129}Xe nucleus (satellites) are denoted by (*).

 $^{^{\}P}$ Anhydrous NaI (in an excess) was added to a cold (-60 °C) stirred solution of 2 (cis:trans = 4:1) in aHF (0.7 ml) and caused immediate gas evolution and a pink colouration. The products were extracted with cold (-60 °C) CH₂Cl₂ (0.5 ml). The ^{19}F NMR spectrum showed the quantitative conversion of 2 to C₄F₉CF=CFI 3.